Elastase-induced suppression of endothelin-mediated Ca2+ entry mechanisms of vascular contraction.
نویسندگان
چکیده
Abdominal aortic aneurysm (AAA) is associated with increased endothelin (ET-1), both systemically and locally in the aorta. Also, elastase activity is increased in human AAA, and elastase perfusion of the aorta induces aneurysm formation in animal models of AAA. However, whether elastase directly affects the ET-1-induced mechanisms of aortic smooth muscle contraction is unclear. Isometric contraction and 45Ca2+ influx were measured in aortic strips isolated from male Sprague-Dawley rats and treated with elastase (5 U/mL). To avoid degradation of the extracellular matrix proteins by elastase, experiments were performed in the presence of elastin (10 mg/mL). In normal Krebs solution (2.5 mmol/L Ca2+), ET-1 (10(-7) mol/L) caused contraction of aortic strips that was inhibited by elastase (5 U/mL). The elastase-induced inhibition of ET-1 contraction was slow in onset (4.6+/-0.4 minutes), time-dependent, complete in 34+/-3 minutes, and reversible. In Ca2+-free Krebs solution, caffeine (25 mmol/L) caused a small contraction that was not inhibited by elastase, suggesting that elastase does not inhibit Ca2+ release from the intracellular stores. Membrane depolarization by 96 mmol/L KCl, which stimulates Ca2+ entry from the extracellular space, caused a contraction that was inhibited by elastase in a concentration-dependent, time-dependent, and reversible fashion. The reversible inhibitory effects of elastase, particularly in the presence of elastin, suggest that they are not due to dissolution of the extracellular matrix or smooth muscle contractile proteins. Elastase also inhibited ET-1 and KCl-induced 45Ca2+ influx. Thus, elastase directly inhibits ET-1-induced Ca2+ entry mechanisms of vascular smooth muscle contraction, which may explain the role of elastase and ET-1 during the development of AAA.
منابع مشابه
Elastase-Induced Suppression of Endothelin-Mediated Ca Entry Mechanisms of Vascular Contraction
Abdominal aortic aneurysm (AAA) is associated with increased endothelin (ET-1), both systemically and locally in the aorta. Also, elastase activity is increased in human AAA, and elastase perfusion of the aorta induces aneurysm formation in animal models of AAA. However, whether elastase directly affects the ET-1–induced mechanisms of aortic smooth muscle contraction is unclear. Isometric contr...
متن کاملEndothelin-induced increases in Ca2+ entry mechanisms of vascular contraction are enhanced during high-salt diet.
High-salt diet is often associated with increases in arterial pressure, and a role for endothelin (ET)-1 in salt-sensitive hypertension has been suggested; however, the vascular mechanisms involved are unclear. We investigated whether ET increases the sensitivity of the mechanisms of vascular contraction to changes in dietary salt intake. Active stress and 45Ca2+ influx were measured in endothe...
متن کاملThe Rhododendron dauricum L. Flavonoids Exert Vasodilation and Myocardial Preservation
Rhododendron dauricum L. is an ancient Chinese traditional herb. The pharmacological effects of R. dauricum extract have been shown in chronic tracheitis. The aim of this study was to investigate the cardiovascular effects of Rhododendron dauricum L. flavonoids (RF) on rats and its mechanisms. This study was performed in isolated vascular rings and a rat model of myocardial infarction and isola...
متن کاملThe Rhododendron dauricum L. Flavonoids Exert Vasodilation and Myocardial Preservation
Rhododendron dauricum L. is an ancient Chinese traditional herb. The pharmacological effects of R. dauricum extract have been shown in chronic tracheitis. The aim of this study was to investigate the cardiovascular effects of Rhododendron dauricum L. flavonoids (RF) on rats and its mechanisms. This study was performed in isolated vascular rings and a rat model of myocardial infarction and isola...
متن کاملAdvanced glycation endproduct modified basement membrane attenuates endothelin-1 induced [Ca2+]i signalling and contraction in retinal microvascular pericytes.
PURPOSE To assess the effects of advanced glycation endproduct (AGE) modification of vascular basement membrane (BM) on endothelin-1 (Et-1) induced intracellular [Ca2+] ([Ca2+]i) homeostasis and contraction in retinal microvascular pericytes (RMP). METHODS RMPs were isolated from bovine retinal capillaries and propagated on AGE modified BM extract (AGE-BM) or non-modified native BM. Cytosolic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 42 4 شماره
صفحات -
تاریخ انتشار 2003